626 research outputs found

    ALMA Observations of the Young Substellar Binary System 2M1207

    Get PDF
    We present ALMA observations of the 2M1207 system, a young binary made of a brown dwarf with a planetary-mass companion at a projected separation of about 40 au. We detect emission from dust continuum at 0.89 mm and from the J=3−2J = 3 - 2 rotational transition of CO from a very compact disk around the young brown dwarf. The small radius found for this brown dwarf disk may be due to truncation from the tidal interaction with the planetary-mass companion. Under the assumption of optically thin dust emission, we estimated a dust mass of 0.1 M⊕M_{\oplus} for the 2M1207A disk, and a 3σ\sigma upper limit of ∼1 MMoon\sim 1~M_{\rm{Moon}} for dust surrounding 2M1207b, which is the tightest upper limit obtained so far for the mass of dust particles surrounding a young planetary-mass companion. We discuss the impact of this and other non-detections of young planetary-mass companions for models of planet formation, which predict the presence of circum-planetary material surrounding these objects.Comment: 10 pages, 6 figures, accepted for publication in A

    Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4

    Full text link
    Millimeter wavelength observations are presented of NGC 1333 IRAS 4, a group of highly-embedded young stellar objects in Perseus, that reveal motions of infall, outflow, rotation, and turbulence in the dense gas around its two brightest continuum objects, 4A and 4B. These data have finest angular resolution of approximately 2" (0.0034 pc) and finest velocity resolution of 0.13 km/s. Infall motions are seen from inverse P-Cygni profiles observed in H2CO 3_12-2_11 toward both objects, but also in CS 3-2 and N2H+ 1-0 toward 4A, providing the least ambiguous evidence for such motions toward low-mass protostellar objects. Outflow motions are probed by bright line wings of H2CO 3_12-2_11 and CS 3-2 observed at positions offset from 4A and 4B, likely tracing dense cavity walls. Rotational motions of dense gas are traced by a systematic variation of the N2H+ line velocities, and such variations are found around 4A but not around 4B. Turbulent motions appear reduced with scale, given N2H+ line widths around both 4A and 4B that are narrower by factors of 2 or 3 than those seen from single-dish observations. Minimum observed line widths of approximately 0.2 km/s provide a new low, upper bound to the velocity dispersion of the parent core to IRAS 4, and demonstrate that turbulence within regions of clustered star formation can be reduced significantly. A third continuum object in the region, 4B', shows no detectable line emission in any of the observed molecular species.Comment: LateX, 51 pages, 9 figures, accepted by Ap

    ALMA observations of the narrow HR 4796A debris ring

    Get PDF
    The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar system’s Edgeworth–Kuiper belt. Here we present high spatial resolution 880 μm continuum images from the Atacama Large Millimeter Array. The 80 au radius dust ring is resolved radially with a characteristic width of 10 au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disc is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disc that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect 12CO J=3–2 emission, concluding that unless the disc is dynamically cold the CO+CO2 ice content of the planetesimals is of order a few per cent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the ring’s eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40 au. Independent of our ALMA observations, we note a conflict between mid-IR pericentre-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored

    New constraints on the millimetre emission of six debris discs

    Get PDF
    The presence of dusty debris around main-sequence stars denotes the existence of planetary systems. Such debris discs are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at longer wavelengths tracing larger and cooler dust grains. The exponent of the slope of the disc emission at submillimetre wavelengths, ‘q’, defines the size distribution of dust grains in the disc. This size distribution is a function of the rigid strength of the dust producing parent planetesimals. As a part of the survey ‘PLAnetesimals around TYpical Pre-main seqUence Stars’, we observed six debris discs at 9 mm using the Australian Telescope Compact Array. We obtain marginal (∼3σ) detections of three targets: HD 105, HD 61005 and HD 131835. Upper limits for the three remaining discs, HD 20807, HD 109573 and HD 109085 provide further constraint of the (sub-)millimetre slope of their spectral energy distributions. The values of q (or their limits) derived from our observations are all smaller than the oft-assumed steady-state collisional cascade model (q = 3.5), but lie well within the theoretically expected range for debris discs q ∼ 3–4. The measured q values for our targets are all <3.3, consistent with both collisional modelling results and theoretical predictions for parent planetesimal bodies being ‘rubble piles’ held together loosely by their self-gravity

    SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

    Full text link
    We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23" (80 pc) for the continuum and 0.33" (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.Comment: ApJ. in press. 26 pages, 10 figure

    Co-creating educational consumer journeys : a sensemaking perspective

    Get PDF
    To date, customer education has been framed in terms of one-way information provision, at odds with much of the literature on meaning co-creation. Drawing on an ethnography of a specialty coffee purveyor, we show how staff and consumers co-create educational consumer journeys through the deployment of seven practices: auditing, realignment, marrying competing logics, negotiating scripts, evangelizing, expanding collective knowledge, and impression management. These practices require staff and consumers to enact three different educational roles (educator, student, and peer), which are necessary for the co-creation and extension of consumer journeys. The roles, practices and the journeys themselves emerge iteratively through sensebreaking, sensegiving, and sensemaking processes among staff, consumers and the servicescape. Our findings frame customer education as a dynamic process in which meaning is co-created between participants. Furthermore, the cues and touchpoints needed for meaning-making shift as power relations between participants change. Managerially, these findings highlight the potential of co-created educational consumer journeys to expand established market categories

    The Degree Of Alignment Between Circumbinary Disks And Their Binary Hosts

    Get PDF
    All four circumbinary (CB) protoplanetary disks orbiting short-period (P \u3c 20 days) double-lined spectroscopic binaries (SB2s)—a group that includes UZ Tau E, for which we present new Atacama Large Millimeter/Submillimeter Array data—exhibit sky-plane inclinations i disk that match, to within a few degrees, the sky-plane inclinations i★ of their stellar hosts. Although for these systems the true mutual inclinations θ between disk and binary cannot be directly measured because relative nodal angles are unknown, the near coincidence of i disk and i★ suggests that θ is small for these most compact of systems. We confirm this hypothesis using a hierarchical Bayesian analysis, showing that 68% of CB disks around short-period SB2s have θ \u3c 30. Near coplanarity of CB disks implies near coplanarity of CB planets discovered by Kepler, which in turn implies that the occurrence rate of close-in CB planets is similar to that around single stars. By contrast, at longer periods ranging from 30 to 105 days (where the nodal degeneracy can be broken via, e.g., binary astrometry), CB disks exhibit a wide range of mutual inclinations, from coplanar to polar. Many of these long-period binaries are eccentric, as their component stars are too far separated to be tidally circularized. We discuss how theories of binary formation and disk–binary gravitational interactions can accommodate all these observations

    The Architecture of the GW Ori Young Triple Star System and Its Disk: Dynamical Masses, Mutual Inclinations, and Recurrent Eclipses

    Full text link
    We present spatially and spectrally resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of gas and dust orbiting the pre-main sequence hierarchical triple star system GW Ori. A forward-modeling of the 13{}^{13}CO and C18{}^{18}O JJ=2-1 transitions permits a measurement of the total stellar mass in this system, 5.29±0.09 M⊙5.29 \pm 0.09\,M_\odot, and the circum-triple disk inclination, 137.6±2.0∘137.6 \pm 2.0^\circ. Optical spectra spanning a 35 year period were used to derive new radial velocities and, coupled with a spectroscopic disentangling technique, revealed that the A and B components of GW Ori form a double-lined spectroscopic binary with a 241.50±0.05241.50\pm0.05 day period; a tertiary companion orbits that inner pair with a 4218±504218\pm50 day period. Combining the results from the ALMA data and the optical spectra with three epochs of astrometry in the literature, we constrain the individual stellar masses in the system (MA≈2.7 M⊙M_\mathrm{A} \approx 2.7\,M_\odot, MB≈1.7 M⊙M_\mathrm{B} \approx 1.7\,M_\odot, MC≈0.9 M⊙M_\mathrm{C} \approx 0.9\,M_\odot) and find strong evidence that at least one (and likely both) stellar orbital planes are misaligned with the disk plane by as much as 45∘45^\circ. A VV-band light curve spanning 30 years reveals several new ∼\sim30 day eclipse events 0.1-0.7~mag in depth and a 0.2 mag sinusoidal oscillation that is clearly phased with the AB-C orbital period. Taken together, these features suggest that the A-B pair may be partially obscured by material in the inner disk as the pair approaches apoastron in the hierarchical orbit. Lastly, we conclude that stellar evolutionary models are consistent with our measurements of the masses and basic photospheric properties if the GW Ori system is ∼\sim1 Myr old.Comment: 26 pages, 15 figures, accepted to Ap

    A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure

    Full text link
    Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88mm to ~10mm is available (from SMA, CARMA, and VLA), finding evidence of a decreasing maximum dust grain size (a_max) with radius. We derive large a_max values up to 1 cm in the inner disk between 15 and 30 AU and smaller grains with a_max~1 mm in the outer disk (R > 80AU). In this paper we develop a multi-wavelength analysis that will allow this missing quantity to be constrained for statistically relevant samples of disks and to investigate possible correlations with disk or stellar parameters.Comment: 19 pages, 15 figures, accepted for publication in A&

    On the structure of the transition disk around TW Hya

    Get PDF
    For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 um) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.Comment: 22 pages, 12 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore